War in Space, 1939 – II: “Space War Tactics” in Astounding Science Fiction, by Malcolm Jameson (November, 1939)


Deprecated: Function create_function() is deprecated in /home3/emc2ftl3/public_html/wp-content/plugins/wp-spamshield/wp-spamshield.php on line 2033

Three months after the appearance of Willy Ley’s article “Space War” in the August, 1939 issue of Astounding Science Fiction, Malcolm Jameson penned (well, in all probability, he typed – remember typewriters?) a follow-up article of similar length and concept, but focused on a different aspect of spacecraft-to-spacecraft combat:  The actual tactics of battle.  Thus, Jameson – perhaps reflective of his background as a naval officer – accords attention to the maneuvers utilized by opposing spacecraft, only later in his article discussing weapons, and unlike Ley, being an advocate of “rocket torpedoes”.

Jameson’s article is supplemented by two diagrams which illustrate the trajectories of opposing spacecraft engaged in combat.  (You can see his signature at the lower right in each.)  In both diagrams – here limited to two dimensions, and viewed from “below” – the track of “our” spacecraft is on the left, and the enemy ship to the right. 

In the first diagram, our craft is on a straight trajectory, with the enemy ship taking an abrupt “right” turn at position “7”, the weapons employed by our spacecraft presumably being rocket-torpedoes. 

In the second diagram, the pair of spacecraft are on a converging trajectory, the weapons being mines as well as rocket-torpedoes.

Paralleling my post about Willy Ley’s article about space war, here are some general “take-aways” from Jameson’s article:

1) Military conflicts, regardless of the era or the nature of weapons employed, can be expected to follow the same general principles.  Thus, though “space” is by nature a setting different from arenas of battle in the traditional sense, the same concepts and assumptions can be expected to hold there, as well.

However, two primary differences stand out:  “Space” differs from taken-for-granted terrestrial settings (any planetary setting, really) in terms of its (apparently limitless) extent, and, the speed of the craft involved.  The implications and challenges of the latter, in terms of even the nominal possibility of maneuver, as well as locating, tracking, aiming, and firing at enemy craft, cannot be underestimated.

2) Given the speed of combat between spacecraft, gunnery computations (like Willy Ley’s August article, Jameson’s analysis is based on the assumption that spacecraft armament will comprise some form of weaponry firing either simple mass weapons or explosive projectiles, rather than an energy weapon of unknown design and function) will demand the use of a “differentia calculator”.  Though he does not elaborate, Jameson seems to have been either anticipating or conceptualizing such a device as ENIAC (Electronic Numerical Integrator and Computer), the existence of which was announced to the public ten months after his death.  

3)  The spacecraft’s armament is simple, whether by the standards of the late ‘thirties or 2021:  The craft shoots projectiles comprised of “a simple sphere of meteoric iron”.  Due to the velocities involved, explosives are entirely unnecessary: The momentum of such a projectile is entirely adequate to damage or destroy an enemy spacecraft.

4) A substantial portion of Jameson’s text – specifically pertaining to Figure 1 – pertains to the manner in which “our” spacecraft will locate, identify, and track the enemy vessel, and, plot a firing trajectory for its weapons.  Here, Jameson description of the craft’s “plotting room,” the “most vital spot in the ship,” seems (unsurprisingly, given his naval background) akin to a description of a battleship or aircraft carrier’s combat information center, “the counterpart of the brain”.    

Then, his essay gets really interesting, for – in the context of describing the tracks of two spacecraft engaged in combat, as diagrammed in Figure 2 – he postulates about the nature of space-borne rangefinders and target-bearing transmitters, suggesting for the former determining distance – “sounding” by radio waves – and the latter something akin to a thermoscope, or simply put, a device showing changes in temperature, against a given background. 

In other words, he seems to have been respectively anticipating both radar, and, what is now known as IRST: Infrared Search and Track.      

5) Interestingly, unlike Willy Ley, Jameson is also an advocate of the use of some form of what he dubs “rocket torpedoes” rather than shells, due to the latter’s “advantage of auto-acceleration” and the “ability to build up speed to any desired value after having been launched,” versus the delay inherent to the sequence of events involved in the the actual firing and movement of a shell from a gun.  Of course, even assuming the enemy vessel is attacked with “rocket torpedoes”, such devices – in the context and era of Jameson’s article – would have no internal guidance or tracking system of their own, their “flight” path being entirely dependent on course adjustments of the firing platform – “our” spacecraft – itself.      

5) Where mentioned, I’ve included conversions of given velocities (“miles per second”) to velocities per hour, in both English and Metric systems, the former in statue miles.  These are denoted by brackets.  (e.g., [90,000 mph / 144,840 kph]).

As in the post covering Ley’s article, the most notable passages of the text are italicized and in red, like these last twelve words in this sentence.  The post concludes with links to a variety of excellent videos covering spacecraft-versus-spacecraft battles, and “space war”, in greater detail, in light of (quite obviously!) contemporary knowledge.   

__________

You can read the Wikipedia article about Malcolm Jameson here, while the Internet Speculative Fiction Database compilation of his writing can be found here

Jameson’s memorial tribute (I guess penned by John W. Campbell, Jr.?) from the July 1945 issue of Astounding, follows:

MALCOLM JAMESON
December 21, 1891 – April 16, 1945

Malcolm Jameson, a man possessed of more shear courage than most of us will ever understand, died April 16, 1945, after an eight-year writing career, initiated when cancer of the throat forced him to give up the more active life he wanted.  Any author can tell you that you can’t write good stuff when you’re feeling sick.  Jamie never quite understood that – perhaps because he began when he did.  X-ray and radium treatment controlled the cancer for a time, but only at a price of permanent severely bad health.

He sold his first story to Astounding in 1938.  [“Eviction by Isotherm“, August, 1938.]  That was followed by such memorable and sparklingly light stories as “Admiral’s Inspection,” the whole Commander Bullard series, and his many other stories in UNKNOWN WORLDS.

The man who could accomplish that under the conditions imposed on him was not of ordinary mold.

The Commander Bullard series grew out of Jameson’s own experiences as a Lieutenant in the United States Navy from 1916 till his retirement in 1927.  He had much to do with the development of modern naval ordnance; his work is fighting in this war, though he himself was not permitted to do so.

He is survived by his wife, his daughter, Corporal Vida Jameson, of the WAC, his son, Major Malcolm Jameson, in the Infantry and now overseas, and his brother, House Jameson, better known as “Mr. Aldrich” of the “Aldrich Family” program.

The Editor.

____________________

You’ll notice that Hubert Rogers’ iconic depiction of a space fleet control center (for E.E. Smith’s “Gray Lensman”) as the cover of the November, 1939 issue of Astounding, appears below.  Further down in the post are two interior illustrations – from the November, 1941, and February, 1948 issues of Astounding, in which Rogers created views of the same scene for Smith’s “Second Stage Lensman” and “Children of the Lens”, respectively.  (The image of the control center in the 1948 issue was scanned from an original copy, and photoshopifically “niced up” to bring out the details, for this post.)  You can view other images of this nature, and more, at my brother blog, WordsEnvisioned.       

____________________

And so, on to Malcolm Jameson’s “Space War Tactics” from the month of November, in the year 1939…

SPACE WAR TACTICS

Expanding on Willy Ley’s recent article, Jameson brings out some important details – not the least of which is that a space battle fleet gets one shot at the enemy in months of maneuvering!

By Malcolm Jameson

Illustrated by Malcolm Jameson

Astounding Science Fiction
November, 1939

I.

Ship to Ship Engagement

A working knowledge of the game of chess is a useful adjunct in understanding the art of war.  War is not a series of haphazard encounters hut a definite understanding governed by principles that never change, however much the weapons and uniforms and the colors of the flags may.  Like chess it is a continuing struggle between two opponents, each trying to estimate the strength of the other and to divine his purposes and most probable objective, and what his next move will be.  It is a marauding and movement of forces, a series of threats and feints, of advances and withdrawals, punctuated by sharp conflict as one or the other forces the issue.

As the rules of chess govern the movement of each piece, so does the field of operations in war, whether it is rocky terrain or swampy, the open sea or the cloud-streaked skies, or the vast reaches of space itself.  Tactics, and in a measure the weapons, are rigidly determined by the controlling environment.

We can, therefore predict with some assurance the general nature of space warfare, for we already know something of the properties of the void and what characteristics ships that traverse it arc likely to have.  With such ships and in such a theater of operations, we have only to apply the principles of warfare developed by men through centuries of strife to arrive at an approximation of the tactics they will use.  We can be fairly certain of the kind of weapons and instruments they will have, for the very advent of spaceships is presumptive of continued advance in science along much the same lines we have already come.

There are two great factors in space warfare that will set it off sharply from anything else in human experience, and those two factors will modify fighting-ship types, strategy and tactics profoundly. They are: (a) the extent of space, and (b) the tremendous speed of the vessels.

At the risk of boring those who have already read and thought a good deal about travel in space and who feel that they long ago formed a satisfactory idea of what the limitless reaches of the void are like, I want to dwell a moment on the subject of the vastness of space.  It deserves all the emphasis we can give it.

Psychologists assert that it is beyond the capacity of the human mind to conceive of quantities, extents or durations beyond rather close limits.  We may nod understandingly at hearing mention of a billion-dollar appropriation, but we grasp the idea solely because we are thinking of those billion dollars as a unit sum of money.  If we tried to visualize them as coins we would fail utterly.  The mind cannot picture ten hundred thousands of thousands of silver disks.  “Many” is the best it can do – there are too many dollars there for one mindful.  And so it is with distance.

It has been my good fortune to have traveled extensively; I have crossed oceans as navigator, stepping off the miles made good each day or watching them slide by under the counter.  Thus I have a hazy notion of the size of the Earth – it is oppressively huge.  What, then, of the two or three million-mile straightaway covered in a single day’s run of a rocket-ship – represented by a quarter-inch pencil mark on the astragator’s chart of the ecliptic?  The Earth he left but yesterday had already dwindled to a small bright disk and before the week is over it will be seen only as a brilliant blue star.  In that incredibly vast celestial sphere in which lie is floating – stretching as it does without limit before, behind and to every side, above and below – where and how can we hope to find his enemy?

For even if he passed another ship close aboard, he would not so much as glimpse it.  Speeds in space are as stupendous as the spaces they traverse.  Needing seven miles per second to escape the Earth and another twenty to make any reasonable progress between the planets, even the slowest vessels will have speeds of twenty-five miles per second [90,000 mph / 144,840 kph].  Warships. presumably. according to type, will have correspondingly higher speeds – perhaps as high as fifty miles per second [180,000 mph / 289,682 kph … or, 0.000268 c] for the faster scouts.

Speeds of that order are as baffling to the imagination as the depths of the void.  When we recall that the fastest thing most of us are familiar with is the rifle bullet, whizzing along at a lazy half-mile per second [1,800 mph / 2,897 kph], we see that we do have a yardstick.  The ships mentioned above proceed at from fifty to one hundred times that fast – invisible, except under very special circumstances.  It is barely possible, we know, for a quick eye to pick up twelve-inch shells in flight if he knows just where, when and how to look, but a momentary glimpse is all he gets.

When we talk of gunfire or any other means of offense, we have to bear these dizzy speeds firmly in mind.  The conclusion is irresistible that scouting, tracking, range finding and relative bearings will all be observed otherwise than visually.  Even on the assumption of attack from the quarter, the most obvious approach – and for the same reason that aviators “get on the tail” – the overtaking vessel must necessarily have such an excess of speed that the visual contact can last but a few seconds.  Each of the combatants must compute the other’s course from blind bearings and ranges and lay their guns or point their torpedo tubes by means of a differentia calculator.

However, in this blind tracking there is one peculiarity of these ships that while it is in one sense a source of danger to them, is of distinct assistance.  In the fleeting minutes of their contact, neither can appreciably alter course or speed!  This is a point that writers of fiction frequently ignore for the sake of vivid action, but nevertheless it is an unavoidable characteristic of the [e]ther-borne [?!] ship.

The human body can withstand only so much acceleration and the momentum these vessels carry has been built up, hour after hour, by piling increment of speed on top of what had been attained before.  In space there is no resistance.  Once the rockets are cut, the ship will soar on forever at whatever velocity she had at the moment of cutting.  Her master may flip her end over end and reverse his acceleration, but his slowing will be as tedious and cautious as his working up to speed.  Jets flung out at right angles merely add another slight component to the velocity, checking nothing.

Rocket experts have stated that an acceleration of one hundred feet per second per second can be withstood by a human being – perhaps one hundred and fifty in an emergency.  The master of a vessel proceeding at forty miles per second [144,000 mph / 231,745 kph] applying such an acceleration at right angles would succeed in deflecting his flight about one hundred miles by the end of the first minute, during which he will have run twenty-four hundred – a negligible turn, if under fire.  Applied as a direct brake, that hundred miles of decreased velocity would slow him by one twenty-fourth – obviously not worth the doing if the emergency is imminent.

With these conditions in mind, let us imagine a light cruiser of the future bowling along at forty miles per second on the trail of an enemy.  The enemy is also a cruiser, one that has slipped through our screen and is approaching the earth for a fast raid on our cities.  He is already decelerating for his prospective descent and is thought to be about one hundred and fifty thousand miles ahead, proceeding at about thirty-five miles per second [126,000 mph / 202,777 kph].  Our cruiser is closing on him from a little on his port quarter, and trying to pick him up with its direction finders.

So far we have not “seen” him.  We only know from enciphered code messages received several days ago from our scouting force, now fifty millions astern of us, that he is up ahead.  It would take too long here to explain how the scouts secured the information they sent us.  The huge system of expanding spirals along which successive patrols searched the half billion cubic miles of dangerous space lying between us and the enemy planet is much too intricate for brief description.  It is sufficient for our purposes that the scouts did detect the passage of the hostile cruiser through their web and that they kept their instruments trained on him long enough to identify his trajectory.  Being neither in a position to attack advantageously nor well enough armed – for their function is the securing of information, and that only – they passed the enemy’s coordinates along to us.  This information is vital to us, for without it the probability of contact in the void is so remote as to be nonexistent.

The ship in which we are rushing to battle is not a large one.  She is a bare hundred meters [328 feet] in length, but highly powered.  Her multiple rocket tubes, now cold and dead, are grouped in the stern.  We have no desire for more speed, having all that is manageable already, for after the few seconds of our coming brush with the enemy our velocity is such that we will far overrun him and his destination as well.  It will require days of maximum deceleration for us to check our flight and be in a position to return to base.

Our ship’s armament, judged by today’s standards, will at first sight appear strangely inadequate.  Our most destructive weapon is the “mine,” a simple sphere of meteoric iron about the size of a billiard ball, containing no explosive and not fused.  The effectiveness of such mines depends upon the speed with which they are struck by the target ship – no explosive could add much to the damage done by a small lump of iron striking at upward of thirty miles a second.  Then there will he torpedo tubes amidships, and perhaps a few guns, but it may lie well to postpone a discussion of the armament until we have examined the conditions at the place of battle.

Although we know in a general way where the enemy is and where he is going, before we close with him we must determine his course and speed very accurately, for our ability to hit him at all is going to depend upon extremely nice calculations.  Our speeds are such that angular errors of so much as a second of arc will be fatal, and times must be computed to within hundredths of seconds.

This falls within the province of fire-control, a subject seldom if ever mentioned by fiction writers.  There is no blame to be attached to them for that, for the problems of fire-control are essentially those of pure mathematics, and mathematics is notoriously unthrilling to the majority of readers.  Yet hitting with guns – or even arrows, though the archer solves his difficulties by intuition – requires the solution of intricate problems involving the future positions and movements of at least two bodies, and nothing more elementary than the differential calculus will do the trick.  In these problems interior ballistics, for all its interesting physics, boils down to a single figure – the initial velocity of the projectile, while exterior ballistics evaporates for the most part the moment we propel our missile into a gravityless vacuum.  In space we are to be concerned with the swiftly changing relationship of two rapidly moving vessels and the interchange of equally swift projectiles between them, the tracks of all of them being complicated curves and not necessarily lying in a plane.

In its simplest statement the problem of long-range gunnery is this: where will the enemy be when my salvo gets there?  For we must remember that even in today’s battles the time the projectile spends en-route to its target is appreciable – fully a minute on occasion, at sea, during which the warship fired upon may move as much as half a mile.  Under such circumstances the gunner does not fire directly at his target, but at the place it is going to be.  That requires very accurate knowledge of where the enemy is headed and how fast he is moving.

At sea that is done by observing successive bearings and ranges and plotting them as polar coordinates, bearing in mind that the origin is continuously shifting due to the ship’s own motion.  This work of tracking – the subsequent range-keeping and prediction of future ranges and bearings – is done in our times in the plotting room.  This is the most vital spot in the ship, for if her weapons may be likened to fists and her motive power to legs, her optical and acoustical instruments to eyes and ears, then the plotting room is the counterpart of the brain.  There all the information is received, corrected, digested, and distributed throughout the ship.  Without that co-ordination and direction the ship would be as helpless as an idiot.

Well, hardly that helpless today.  Our individual units, such as turret crews, can struggle on alone, after a fashion.  But not so with the ship of the future.  There the plotting room is everything, and when it is put out of commission, the ship is blind and paralyzed.  It will, of course, be located within the center of the ship, surrounded by an armored shell of its own, and in there will also be the ship control stations.

The best way to approach the problems our descendants will have to face is to consider a simple problem in tracking that our own warships deal with daily.  It is an absurdly simple one compared to the warped spirals to be handled in space warfare, but it will serve to illustrate the principle.  In Fig. 1. it is shown graphically, but in actual practice the elements of the problem are set up on a motor-driven machine which thereupon continuously and correctly delivers the solutions of problems that would take an Einstein minutes to state.  As the situation outside changes, corrections are cranked into the machine, which instantly and uncomplainingly alters its calculations.

In the figure we have the tracks of two ships, ours the left-hand one.  For the sake of clarity and emphasis I have made the ratio of speeds three to one, but the same trends would be shown at the more usual ratio of, say, 20:19

At positions “1,” “2,” “3” and so on, we observe the range and hearing of the target, and plot them.  By noting the differences between successive readings and the second differences between those, we soon have an idea of the type of curve the rates of changes would plot into.  In a short time we can also note that the rates themselves are changing at a certain rate.  This is a rough sort of differentiation – by inspection – and to one familiar with such curves these trends have a definite meaning.

For example, it is apparent that the series of observed angles “Beta” are steadily opening, signifying that we are drawing past the target.  Any sudden alteration of the second differences, such as occurs at “8,” at once indicates a change of condition on the part of the enemy.  He has either turned sharply away or slowed to half speed, for the bearing suddenly opens nearly two degrees more than the predicted beating.  We learn which by consulting our ranges.  It could be a combination of changed course and changed speed.

The ranges during the first seven lime-intervals have been steadily decreasing, although the rate of decrease has been slowing up, indicating we are approaching the minimum range.  At “8,” though, the range not only fails to decrease, but the rate of change actually changes sign.  We know without doubt that the enemy has turned away.

The importance of having the machine grind out predicted bearings and ranges, aside from the desirability of speed and accuracy, is that at any moment smoke, a rain squall, or intervening ships may obscure the target.  In that event the gunners need never know the difference – their range and bearing indicators arc ticking away like taximeters, fed figures by the controlling range-keeper.  It would not have mattered if sight had been lost of the enemy at “4”; the gun- fire would have been just as accurate up to the time he changed course as if they had the target in plain sight, t

As a matter of fact, the guns are not pointed at the target at all, but in advance of it, as is shown in Fig. 1 (a), both range and bearing being altered to allow for the forward movements of the target while the shells are in the air.  The projectiles may be regarded as moving objects bandied on a “collision course” with regard to the enemy vessel.

Speaking of collision courses, it is an interesting property of relative bearings that when the bearing remains constant – except in the special case of the vessels being on parallel courses at identical speeds – the vessels will eventually collide, regardless of what their actual courses and speeds are.  Hence, from the time the shots of the salvo left their guns – Fig. 1 (a) – until they struck their target, the target bore a constant angle of thirteen degrees to the right of the nose of the shells.  (This knowledge has some utility in estimating the penetration of armor at the destination.)

In the example above, all the movement can be regarded as taking place in a plane; the ships follow straight courses and they maintain constant speeds.  Our terrestrial problems are in practice much complicated by zigzagging, slowing down and speeding up, but at that they are relatively child’s play compared to what the sky-warrior of the future must contend with.

His tracks are likely to be curved in three dimensions, like pieces of wire hacked out of a spiral bed spring, and whether or not they can be plotted in a plane, they will nowhere be straight.  Moreover, whatever changes of speeds occur will be in the form of steady accelerations and not in a succession of flat steps linked by brief accelerations such as we know.  Computing collision courses between two continually accelerating bodies is a much trickier piece of mathematical legerdemain than finding the unknown quantities in the family of plane trapeziums shown in Fig. I.  Yet projectiles must be given the course and speed necessary to insure collision.

The gunnery officer of the future is further handicapped by rarely ever being permitted a glimpse of his target, certainly not for the purpose of taking ranges and bearings.  In the beginning of the approach the distances between the ships is much too great, and by the time they have closed, their relative speed will generally forbid vision.

Since optical instruments are useless except for astrogational purposes, his rangefinders and target-bearing transmitters will have to be something else.  For bearings, his most accurate instrument will probably be the thermoscope – an improved heat-detector similar to those used by astronomers in comparing the heat emission of distant stars.  It will have a spherical mounting with a delicate micro-vernier.  A nearby spaceship is sure to radiate heat, for it is exposed constantly to full sunlight and must rid itself of the excess heat or its crew will die.  Once such a source of heat is picked up and identified, it can be followed very closely as to direction, although little can be told of its distance unless something is known of its intrinsic heat radiation.

Ranges will probably be determined by sounding space with radio waves, measuring the time interval to the return of reflected waves.  It is doubtful whether this means will have a high degree of accuracy much beyond ranges of one light-second on account of the movement of the two vessels while the wave is in transit both ways.  At long range the need for troublesome corrections is sure to enter.

Such observations, used in conjunction with one another, should give fairly accurate information as to the target’s trajectory and how he bears from us and how far he is away.  This data will be fed into a tracking and range-keeping machine capable of handling the twisted three-dimensional curves involved, and which will at once indicate the time and distance of the closest point of approach.  Both captains will at once begin planning the action.  They may also attempt to adjust their courses slightly, but since the rockets evolve great heat, neither can hope to keep his action from the knowledge of the other owing to the sensitiveness of the thermoscopes.

The rangekeeping instrument suggested, while far surpassing in complexity anything we know of today, will represent a much smaller technical advance than the rockets which drive the ships that house them.  We already have similar machines, so that their counterparts of the future would seem much less mysterious to us than, say, the Walschaert’s valve gear to Hero or Archimedes, or the Jacquard loom to the weavers of the Gobelin tapestries.

Assuming we have, by observation and plotting, full knowledge of the enemy’s path and have come almost into position to commence the engagement, we find ourselves confronted once more with the two overwhelming factors of space warfare – great distance and immense speeds – but this time in another aspect.  We have come up close to our foe – in fact we are within twenty seconds of intersecting his trajectory – and our distance apart is a mere four hundred miles [643 km].  It is when we get to close quarters that the tremendous problems raised by these lightning-like speeds manifest themselves most vividly.

Look at Fig. 2.

The elapsed time from the commencement of the engagement until the end is less than twenty seconds.  Our ship is making forty miles per second, the other fellow is doing thirty-three.  We will never be closer than fifty miles, even if we regard the curves as drawn as being in the same plane.  If one rides over or below the other, that minimum range will be greater.  What kind of projectile can cross the two or three hundred miles separating the two converging vessels in time to collide with the enemy?  Shooting cannon with velocities as low as a few miles per second would be like sending a squadron of snails out from the curb to intercept an oncoming motorcycle – it would be out of sight in the distance before they were well started.

Projectiles from guns, if they were to be given velocities in the same relation to ships’ speeds that prevail at present, would have to be stepped up to speeds of three to four thousand miles per second!  A manifest impossibility.  It would be difficult, indeed, to hurl any sort of projectile away from the ship at greater initial velocities than the ship’s own speed.  Such impulses, eighty times stronger than the propelling charge of today’s cannon, would cause shocks of incredible violence.  It follows from that that an overtaken ship is comparatively helpless – unless she is in a position to drop mines – for whatever missiles she fires have the forward inertia of the parent ship and will therefore be sluggish in their movement in any direction but ahead.

Another difficulty connected with gunfire is the slowness with which it comes into operation.  This may seem to some to be a startling statement, but we are dealing here with astonishing speeds.  When the firing key of a piece of modern artillery is closed, the gun promptly goes off with a bang.  To us that seems to be a practically instantaneous action.  Yet careful time studies show the following sequence of events: the primer fires, the powder is ignited and burns, the gases of combustion expand and start the shell moving down the tube.  The elapsed time from the “will to fire” to the emergence of the projectile from the muzzle is about one tenth of a second.  In Fig. 2 our target will have moved more than three miles while our shell is making its way to the mouth of the cannon!  It looks as if guns wouldn’t do.

I come to that conclusion very reluctantly, for I am quite partial to guns as amazingly flexible and reliable weapons, but when we consider that both powders and primers vary somewhat in their time of burning, there is also a variable error of serious proportions added to the above slowness.  It is more likely that the rocket-torpedoes suggested by Mr. Willy Ley in a recent article on space war will be the primary weapon of the future.  They have the advantage of auto-acceleration and can therefore build up speed to any desired value after having been launched.

The exact moment of their firing would have to be computed by the tracking machine, as no human brain could solve such a problem in the time allowed.  But even assuming machine accuracy, great delicacy in tube-laying and micro-timing, the chances of a direct hit cm the target with a single missile is virtually nil.  For all their advanced instruments, it is probable that all such attacks will be made in salvos, or continuous barrages, following the time-honored shotgun principle.  For the sake of simplicity, only two such salvos are shown on the diagram, but probably they would be as nearly continuous as the firing mechanisms of the tubes would permit.  Any reader with a flair for mathematics is invited to compute the trajectories of the torpedoes.  The ones shown were fired dead abeam in order to gain distance toward the enemy as rapidly as possible.

It is desirable that these torpedoes should vanish as soon as practicable after having overrun their target.  To that end their cases are made of thin magnesium, and between the head and the fuel compartment is a space filled with compressed oxygen and a small bursting charge The tip of the head is loaded with liquid mercury.  Such a massive projectile would penetrate any spaceship with ease, but if it missed it would burst as soon as the fuel supply was spent and then consume itself in brilliant flame, thus avoiding littering the Spaceways with dangerous fragments.

Spotting, as we know it, would be impossible, for the target would be invisible.  Hits would have to be registered by the thermoscope, utilizing the heat generated by the impact.  The gunnery officer could watch the flight of his torpedoes by their fiery wakes, and see his duds burst; that might give him an idea on which side of the enemy they passed in the event the thermoscopes registered no hits.

If there were guns – and they might be carried for stratosphere use – they could be brought into action at about “15,” firing broad on the starboard quarter.  The shells, also of self-destroying magnesium, would lose some of their forward velocity and drift along in the wake of the ship while at the same time making some distance toward the oncoming enemy.  These guns would be mounted in twin turrets, one on the roof and the other on the keel, cross-connected so that they would be trained and fired together.  It the ships center of gravity lay exactly between them, their being fired would not tend to put the ship into a spin in any direction.  What little torque there might be, due to inequalities in the firing charge, would be taken care of by the ship’s gyro stabilizer, an instrument also needed on board to furnish a sphere of reference so that the master could keep track of his orientation. 

If upon arriving at point “16” the enemy were still full of fight and desperate measures were called for, we could lay down mines.  These hard little pellets would be shot out of mine-laying tubes clustered about the main driving jets.  They would be shot out at slight angles from the fore-and-aft line, and given a velocity exactly equal to the ship’s speed, so that they would hang motionless where they were dropped.  Being cheap and small, they could be laid so thickly that the enemy could not fail to encounter several of them.  If she had survived up to this point, the end would come here.

The end, that is, of the cruiser as a fighting unit.  Riddled and torn, perhaps a shapeless mass of tangled wreckage, she would go hurtling on by, forever bound to her marauding trajectory.  The first duty of our cruiser would be to broadcast warnings to the System, reporting the location of its own mine-field, and giving the direction taken by the shattered derelict.  Sweepers would be summoned to collect the mines with powerful electromagnets, while tugs would pursue and clear the sky of the remnants of the defeated Martian.

______________________________

Illustration by Hubert Rogers, for “Second Stage Lensman – Part I“, by Edward E. Smith, PhD., from Astounding Science Fiction, November, 1941, page 35.  (Cover also by Rogers.)

____________________

Illustration by Hubert Rogers, for “Children of the Lens – Conclusion“, by Edward E. Smith, PhD., from Astounding Science Fiction, February, 1948, page 122.  (Cover by Alejandro Canedo)

______________________________

— References and Related Readings —

Malcolm R. Jameson, at Wikipedia

Malcolm R. Jameson, at International Science Fiction Database

Hubert Rogers, at SciFiGuy

Hubert Rogers, at International Science Fiction Database

Space War, at Atomic Rockets

Vacation in the Golden Age of Science Fiction, by Jamie Todd Rubin

Warfare in Science Fiction, at Technovology

Weapons in Science Fiction, at Technovology

— Here’s a book —

Wysocki, Edward M., Jr., An ASTOUNDING War: Science Fiction and World War II, CreateSpace Independent Publishing Platform, April 16, 2015

— Lots of Cool Videos —

Because ScienceKyle Hill

Why Every Movie Space Battle Is Wrong ((at Nerdist) 5/11/17)

The Truth About Space War (4/12/18)

Curious DroidPaul Shillito

Electromagnetic Railguns – The U.S Military’s Future Superguns – 200 mile range Mach 7 projectiles (11/4/17)

Will Directed Energy Weapons be the Future? (6/12/20)

Generation Films – Allen Xie

Best Space Navies in Science Fiction (2/10/20)

5 Most Brilliant Battlefield Strategies in Science Fiction (5/8/20)

5 Things Movies Get Wrong About Space Combat (5/12/20)

6 More Things Movies Get Wrong About Space Battles (5/28/20)

Why “The Expanse” Has the Most Realistic Space Combat (6/21/20)

It’s Okay To Be SmartJoe Hanson

The Physics of Space Battles (9/22/14)

PBS SpaceTimeMatt O’Dowd

The Real Star Wars (7/19/17)

5 Ways to Stop a Killer Asteroid (11/18/15)

 Science & Futurism with Isaac Arthur (SFIA) – Isaac Arthur

Space Warfare (11/24/16)

Force Fields (7/27/17)

Interplanetary Warfare (8/31/17)

Interstellar Warfare (3/8/18)

Planetary Assaults & Invasions (5/17/18)

Attack of the Drones (9/13/18)

Battle for The Moon (11/15/18)

The Infographics Show

What If There Was War in Space? (12/23/18)

Railguns and More! – The Battle of Thoth Station, in “The Expanse”

Rocinante Attack on Thoth Station (Episode “Doors & Corners”) “The Expanse”, Season 2, Episode 2 (Air Date 2/1/17), at DailyMotion

List of “The Expanse” Episodes, at Wikipedia

War in Space, 1939 – I: “Space War”, in Astounding Science Fiction, by Willy Ley (August, 1939)


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home3/emc2ftl3/public_html/wp-includes/formatting.php on line 4365

Deprecated: Function create_function() is deprecated in /home3/emc2ftl3/public_html/wp-content/plugins/wp-spamshield/wp-spamshield.php on line 2033

So.

…lately, I’ve been perusing my collection of science-fiction pulps – Astounding Science Fiction; Analog; Galaxy Science Fiction; The Magazine of Fantasy and Science Fiction; Startling Stories; Beyond Fantasy-Fiction, and more – admiring cover and interior art; acknowledging the enjoyment of paper and ink versus the stale purity of pixels; and especially (especially!) appreciating the contrast between the first time I read “such and such” a story in a paperback anthology – say, Fredric Brown’s “Arena“, in Volume I of The Science Fiction Hall of Fame – versus said story in its original incarnation in the June, 1944 issue of Astounding.

It seems.

…that the very contrast between things; events; images – as we remember them – and as they actually are, can be of deeper and more provocative impact that those very “things” themselves.

And.

…that “contrast” can easily extend to the taken-for-granted realms of ideas or technology.  In the of science fiction, striking examples of this – striking, in juxtaposition with the “world” of 2021 – appeared in Astounding Science Fiction in August and November  of 1939, in the form of articles by Willy Ley and Malcolm Jameson.  Respectively entitled “Space War” and “Space War Tactics”, both authors presented analyses of how battles between spacecraft (emphasizing individual ship-versus-ship combat) would actually be conducted – in the particular and obvious context of the nature of scientific knowledge and the technology of the late 1930s – versus how such conflict then and even in subsequent decades, was imagined.  (Or, anticipated?!)

Well.

…I enjoyed reading these articles.  And, in light of contemporary and ongoing news about “space” having become a realm of military activity – at a level even beyond what has already transpired since the early 1960s; at a level beyond that of reconnaissance alone – I thought you’d appreciate them, too.

Anyway.

….what I’ve done is fully transcribe both articles as two posts, one article per post – just as they appeared in Astounding back in ’39.  These posts include all illustrations and captions that appeared in the original articles, to which I’ve tossed in some videos (you’ll see what they are), links to additional sources of information, and a little information about one author (Malcolm Jameson) in particular.  In the Jameson article (in the next post), velocities listed in the text have been recalculated as miles (statue miles) and kilometers per hour.  

Purposefully.

…These posts are not primarily intended to critique the technological validity of the analyses and conclusions arrived at by Ley or Jameson.  Rather, they’re instead to open a window upon the intellectual, scientific, and even social “flavor” of the times.  While some of the authors’ analyses and conclusions will be incorrect, quaint, or utterly passe in light of scientific and technological developments that have occurred during the intervening eighty-two (gad, 82?!) years, I can’t help but wonder about the continuing relevance and validity of at least some of their insights, in terms of general concepts about kinetic – projectile – weapons versus “rays”, or, aspects of identification, tracking, and aiming by opposing spacecraft, in the context of speed, and, other factors.  So, each article is preceded by a summary of its central points, with the most notable passages of the text being italicized and in red text, like these last thirteen words in this sentence.  Both posts conclude with links to a variety of excellent videos covering spacecraft-versus-spacecraft battles, and “space war”, in greater detail, in light of (quite obviously!) contemporary knowledge.     

________________________________________

Here’s Willy Ley’s “Space War” from August of 1939.

Some general “take-aways” from his article are:

1) The technology needed for spacecraft already exists, even in rudimentary form.

2) The possibility exists that civilization will progress to such a point where war will become outlawed.  Given ( – alas – ) human nature, in the more likely alternative, the potential and impetus for human conflict that has always existed on earth will continue as man explores space.  

3) By definition, space conflict will parallel aerial conflict by being manifested in three dimensions of movement.

4) In literary depictions of space warfare, a literary device and plot element has been that of energy weapons.  I think Ley is implying infrared projectors or beam weapons.

However, a weapon far, far more mundane and less dramatic, yet vastly more effective, practical, and solidly within the realm of technological development and practical use is some variant of: The gun.  “Well, I still believe that there is no better, more efficient and more deadly weapon for space warfare than an accurate gun with high muzzle velocity.  And I believe that an intelligent being from another planet, that is advanced enough to build or at least to understand spaceships, will look like a man – at least to somebody who does not see very well and cannot find his glasses.”

5)  The technology envisioned for energy or beam weapons – “ray projectors” – even if these can successfully be developed – is prohibitively heavy, bulky, and impractical for use in spacecraft.

6)  Assuming that some form of “gun” is used in space warfare, the projectiles fired by such weapons would be analogous to those used in conventional, “earth-bound” conflicts, albeit specifically relevant to spacecraft versus spacecraft battles.  These would be: 1) High explosive thin-walled shells, and 2) Shells containing large numbers of individual non-explosive projectiles.

7) Some science fiction depictions of space warfare rely on the concept of defensive “screens” (perhaps analogous to the use of “shields” in Star Trek?).  But, can “screens” of whatever nature – “gravity screens” in particular – be developed in theory, let alone technologically, in light of current and future knowledge about the nature of gravity?

8) Rockets would be a possible weapon in space battles, albeit this being 1939, Ley is discussing unguided rockets.  The disadvantages of such weapons are that they could be (relatively) easily spotted, and, the impracticality and danger in storing a relatively large quanitty of combustible and/ or explosive material aboard a spacecraft, let alone the size and mass of such weapons.

9)  Space battles would be characterized by craft camouflaged “night-black”, and using any possible measures to reduce their thermal signatures.

10) Paralleling this, ammunition would be used “sparingly” due to the eventual (!) danger of intact ordnance remaining in orbit around the Sun.  (Or, any old sun.)

11) It would be absolutely essential that the effects of the recoil of any specific weapon, or more likely combination of weapons located at disparate points on the spacecraft’s hull (think of an analogue to the five gun turrets (four remote-control) of a WW II B-29 Superfortress), on the spacecraft’s trajectory be compensated for by the craft’s main engine, or, maneuvering thrusters.

____________________

Oh, before we start with Ley’s article, a comment about this issue’s cover art:  This is the only issue of Astounding Science Fiction for which the cover illustration – for which any illustration, really – was created by Virgil Finlay.  Given Finlay’s superb – sometimes astonishing; almost preternatural; in my opinion quite unparalleled – artistic skill, I’d long wondered why an artist of his caliber had no other association with the magazine most central to the development of science fiction as a literary genre. 

You can find the answer below, in an excerpt from a vastly larger post (link here) at my brother blog,  WordsEnvisioned.     

__________

VIRGIL FINLAY – Dean of Science Fiction Artists

by SAM MOSKOWITZ

Worlds of Tomorrow

November, 1965

Except for an unfortunate experience Finlay might have become a regular illustrator for Astounding Science-Fiction, then the field leader.

Street & Smith had launched a companion titled Unknown, to deal predominantly in fantasy.  Finlay had been commissioned to do several interior drawings for a novelette The Wisdom of the Ass, which finally appeared in the February, 1940 Unknown as the second in a series of tales based on modern Arabian mythology, written by the erudite wrestler and inventor, Silaki Ali Hassan.

John W. Campbell had come into considerable criticism for the unsatisfactory cover work of Graves Gladney on Astounding Science-Fiction during early 1939.  So it was with a note of triumph, in projecting the features of the August, 1939 issue, he announced to his detractors:

“The cover, incidentally, should please some few of you.  It’s being done by Virgil Finlay, and illustrates the engine room of a spaceship.  Gentlemen, we try to please!”

The cover proved a shocking disappointment.  Illustrating Lester del Rey’s The Luck of Ignatz, its crudely drawn wooden human figures depicted operating an uninspired machine would have drawn rebukes from the readers of an amateur science-fiction fan magazine.  The infinite detail and photographic intensity which trademarked Finlay was entirely missing.

No one was more sickened than Virgil Finlay.  He had been asked to paint a gigantic engine room, in which awesome machinery dwarfed the men with implications of illimitable power.  He had done just that; but the art director had taken a couple of square inches of his painting, blown it up to a full-size cover and discarded the rest.

The result was horrendous.  A repetition of it would have seriously damaged his reputation, so Finlay refused to draw for Street and Smith again.

____________________

And so, now on to Willy Ley’s article…

SPACE WAR

Suggesting that rays, ray screens, and all super-potent weapons of science-fiction aren’t half as deadly as a weapon we already have.

By Willy Ley

Illustrated by Willy Ley

Astounding Science Fiction
August, 1939

ABOUT ten years ago, Professor Hermann Oberth, the famous rocket expert, made an interesting experiment which, although having to do with rockets, required neither laboratory nor proving ground.  It was a legal experiment.  Professor Oberth submitted to the German Patent Office a complete description, with drawings, of a “Space Rocket.”  It was, virtually, a spaceship with all the details he had been able to think of in many years of study.

After the usual acknowledgment, there was complete silence for some time.  Then one day a bulky letter arrived from the patent office, containing the expected rejection.  But it was more than just a rejection.  Patent offices do not reject things without explaining why.  And the staff of the patent office did explain.  They had pried the plans apart and patiently and expertly examined every part of them.  And after really tremendous research and labor they had arrived at the conclusion that Professor Oberth’s plans could not be patented because every part and device was known to engineering science and had been patented before in some country by somebody else. (1)

The decision, or rather the explanation given, was in a way more valuable than the granting of a patent would have been.  It proved that spaceships arc not so far beyond the horizon as most people think – the very conservative and very careful staff of a patent office had found that they existed already – only in parts scattered all over and throughout civilization.  Periscopes, air purifiers, air-proof hulls, automatic devices and instruments of all kinds, water regenerators, et cetera, et cetera – they all exist and not even the much-discussed rocket motors are really novel.  Devices very similar to those needed on a tremendous scale for spaceships have already been built on a small scale for gas turbines.

It is, of course, true that, in spite of the decision of the patent office, space-ships arc still to be invented.  Every one of the thousand and one parts needs special adaptation, re-designing and re-research. There is still a tremendous amount of work to be done, and much has to be “invented.”  Point is, however, that there is nothing new in principle that is needed for space travel.  It was almost the same story with airplanes forty years ago.  Everything needed to build an airplane existed.  There was steel tubing and the art of welding it.  There were sheet aluminum and rubber.  There were wheels and propellers, wings were known and gasoline engines could be bought.  The invention of the airplane was delayed because those engines were too weak – it is exactly the same with rocket motors.

With more powerful engines came airplanes.  And with airplanes came thoughts of military application.  At first only observing was contemplated.  Even in actual war – 1914 – airplanes did not combat each other at first.  They observed enemy movements were fired at from the ground and retaliated with primitive bombs.  But the pilots of two airplanes meeting in the air are said to have saluted each other – flying alone was dangerous enough.  Then one day somebody began to shoot with a pistol and soon planes were having machine- gun combats.

It is only logical to assume that space war will follow the advent of the spaceship as aerial warfare followed in the wake of the airplane.  Not from the very outset, probably, because the first space-ships will entail sufficient risk of life in themselves.  But later spaceships will have means to combat each other in space and one day somebody will find, or create, a reason to use these means.  It is possible, though not any too likely, that mankind will have progressed beyond the use of brute force when space travel has advanced to a fair degree of perfection.  And if by then war has already been successfully outlawed, there will be space police and blockade runners.  There will be combat, even if not war.

So much for the likeliness of battles in space – even without the famous invasion from an alien solar system.  How will these battles be fought?  New means of transportation bring new kinds of battle tactics.  Roman chariots fought in another manner than the horsemen of Dshingis Khan.  Byzantine galleys employed other tactics than Sir Francis Drake, and he had other ideas of naval battle than the commander of the U.S.S. Washington.

IN AERIAL BATTLE a new element became important, the maneuverability in three dimensions.  It was not the better gun or the faster plane that decided many single engagements, but the Immelmann turn.  Evidently space war will develop its own tactics – but tactics depend also to a very great extent on the type of armament in use.  That, of course, does not present any question to the science-fiction fan.  He knows it by heart from hundreds of stories, the authors of which neither overexerted their imagination nor perceive a need for too much originality.  Traditionally spaceships attack each other with heat-ray projectors of incredible temperature and tremendous capacity; they probe into each other’s vitals with searing needle rays.  They bombard each other’s screens with proton guns and barytron blasters.  They waste energy in appalling quantities, they do anything but shoot.

____________________

Figure 1.  Pressure curves the barrels of guns.  

____________________

To pull the lanyard of a shiny 75-millimeter nickel-steel gun would be too trivial a thing to do.  Just about as trivial, in fact, as to picture a race of bearded men in white silk dresses armed with crossbows on a planet of Beta Draconis.  The beings that live there must be walking octopi, waving heat guns and disintegrator pistols in their tentacles.  Normal human-looking people would not be hostile enough to the visitors from Terra, and spaceships with simple guns would certainly be ridiculous and puny.  Besides, guns would be to no avail against the ultrarefractory super alloys of the spaceships, and the shells would simply be deflected by force fields.

Well, I still believe that there is no better, more efficient and more deadly weapon for space warfare than an accurate gun with high muzzle velocity.  And I believe that an intelligent being from another planet, that is advanced enough to build or at least to understand spaceships, will look like a man – at least to somebody who does not see very well and cannot find his glasses.

Before going into detail about the advantages of guns it is advisable to contemplate the relative merits of ray projectors.  That they do not exist now is immaterial; science-fiction is not only concerned with things that are but also with those that might be.  How would they look if they did exist?  They would consist of two main parts, the mechanism that produces and projects the rays and the power plant that feeds said mechanism.

Power plants are notoriously heavy and, even if we assume atomic power, the power generator will not be just a vest-pocket affair.  It would probably need a lot of insulation and a powerful cooling device.  We can say with certainty that it would be heavy and bulky.  Also, it will probably be sensitive against shaking and jarring, and it would be unpleasant indeed to see all the atomic converters go out of action in the middle of a battle.  The ray generator itself would most certainly be sensitive since we have to assume tubes of some kind.  And these sensitive ray projectors would have to be in the outer hull of the ship – or even outside the outer hull – so that they do not damage the wrong hull.

So much for the “merits” of ray generators.  Now the rays themselves.  Even the most powerful and most fantastically destructive ray will need some time to inflict damage.  Which implies the need for complicated sighting and focusing devices.  How well the rays will focus is another question.  Almost invariably the beams will spread out with distance.  The farther the target is away the weaker the radiation becomes.  The weaker it becomes the longer it has to strike.  But holding a ray on a fast-moving distant target, that might be practically invisible with black paint against the background of black space, is no small job.

Besides, those rays are supposed to be more than mere searchlights.  They are supposed to have unpleasant destructive qualities, being twelve thousand degrees hot, for example.  Naturally the generator has to be able to endure its own heat.  But, if there is an insulating material that holds out against the energies released at the giving end, it is hard to understand why the same insulator should not be usable to safeguard the hull of the ship that is being rayed – especially since the energy concentration at the receiving end is only a fraction of that at the giving end.

John W. Campbell evaded all these troublesome questions nicely in his “Mightiest Machine” by introducing the transpon beams.  These rays are fairly innocent in themselves, but they have the ability of carrying a large variety and an enormous quantity of vicious radiations originating elsewhere and not touching the projectors.  It is possible that something like this might be accomplished one day, but ordinary rays, as they are usually featured in science-fiction stories, have no place in actual future space war.  Even if they could be generated they would not have any practical military value.

A GUN is a much nicer instrument.  It is compact and sturdy, cannot be damaged by anything less potent than a direct hit from another gun, and does not require a special power plant.  Compared to what one would have to carry around to produce even feeble rays the weight of a gun is small.  Besides, a gun is something we do know how to handle.  More than six centuries of continuous use have taught us how to take advantage of the fact that certain mixtures of chemicals burn with utmost rapidity and produce large quantities of gases while doing so.

That fact permits three main types of possible application, every one of them in use in ordinary warfare and fit to be used in space war, too.  The large volume of gas that is generated suddenly can either he used to destroy its container and whatever happens to be around – that’s the principle of the bomb.  Or it might be discharged comparatively slowly through a hole in the container so that the recoil moves the container – the principle of the rocket.  Finally it might be discharged suddenly through a tube which is blocked by a solid movable object that is then blown out vehemently at high speed just like a dart from a blow gun – the principle of the firearm.  All three, bomb, rocket and gun, were invented in rapid succession soon after the discovery of gunpowder.

____________________

 

Figure 2.  Three types of explosive shells.  Type A is a light, bursting shell, for surface damage.  B, heavily cased with armor, is designed to penetrate steel and concrete armor before bursting.  C is a sort of “flying machine-gun,” a shrapnel shell to scatter hundreds of deadly pellets as bursting.  

__________

 

Figure 3.  Antirecoil device for gases.  The explosion gasses, turned backward, tend to kick the rifle forward as hard as the bullet’s recoil kicks it backward.  

____________________

The latter was found in China around the year 1200 A.D., certainly not much earlier – the statements of old encyclopedias notwithstanding.  Bombs and powder rochets were used for the first time in 1232 during the bottle of Pien-king.  They were then “newly invented.”  As to guns we think that we even know the exact year of their invention.  The Memoriebook (chronicle) of the city of Ghent contains under the year 1313 the entry:

“Item, in dit jaer was aldereerst gevonden in Duitschland het gebruik der bussen van eenen mueninck.”  Translation: “By the way, during this year the use of bussen was discovered for the first time by a monk in Germany.”

“Bussen” meaning portable guns.  The oldest picture of a gun can be found in an Oxford manuscript, De Officiis Regum, from the year 1326.  Eighty years later guns were known in all civilized countries.

But it took more than four centuries until the science of ballistics came into being.  A great many other sciences, especially mathematics, had to be developed first before the performance of a gun could be predicted to a certain extent.

Ballistics arc extremely complicated, and it is hard to tell whether interior or exterior ballistics present fewer or lesser headaches.  The term “exterior ballistics” applies to the movement of the projectile from the moment it leaves the muzzle of the gun until it hits the target.  “Interior ballistics,” consequently means the movement of the projectile within the gun barrel.  The principles are simple in both cases.

The distance reached by a projectile is determined by its muzzle velocity that should be as high as possible and by the angle of elevation where 45 degrees represents the optimum.  High muzzle velocity is, therefore, the main goal, and the laws of interior ballistics tell how it can best be attained.  There are only a few forces at work.  The expanding gases that result from the explosion of the driving charge push the projectile ahead of them, the higher the pressure, the faster.  And the longer the barrel the more time to push.  Counteracting forces are the inertia of the projectile and its friction against the walls of the barrel.  It seems, therefore, that the barrel should he very long and very smooth, the pressure very high and the projectile very light.

Unfortunately it is not quite as simple as becomes apparent if we follow the events in a more detailed form.  The shot begins with the ignition of the driving charge.  It is here where things look most beautiful.  One kilogram of ordinary black gunpowder produces 285 liters of gas at the temperature of zero degrees centigrade, the freezing point of water.  One kilogram of TNT develops 592 liters, one kilogram of nitroglycerin 713 liters, and one kilogram of nitro-cellulose powder even 990 liters.  Now these volumes are valid for zero degrees centigrade.  But the gases are hot, their volume increases by about one third of the zero degree volume for each 100° C. rise.  And the temperature of combustion is high, about 2000° C. for black powder, 2600° C. for TNT, 3100° C. for nitroglycerin and 2200° C. for nitro-cellulose powder.  There is a limit as to what the barrel can stand and don’t forget that it is supposed to have a service life, too.  Things are a little easier if the powder burns rapidly but not instantaneously; the reason, incidentally, why only a very few known explosives can be used as driving charges.  A short moment after complete combustion of the driving charge the internal pressure reaches its highest point, afterward expansion alone works.

THE LENGTH of a barrel is usually expressed not in inches or centimeters, but in calibers, a word which came from the Arab, where it means “model” (standard).  Very short stubby mortar barrels are 12-15 calibers long, heavy naval gun 40-50 calibers and infantry rifles even 90 calibers.  They are not smooth but “rifled”, having a spiral groove which forces the projectiles to spin around their longitudinal axes.  Artillery shells fit the barrel loosely – the rifle effect and the gas tight fit are accomplished by copper rings laid around the shell.

We have arrived at the point where the gases drive the shell by their expansion only.  The speed of the projectile is still increasing then, but not for very long.  The infantry rifle 98 [referring to the German Gewehr 98 bolt action rifle?] that was and is in use in a number of European armies and has been investigated very thoroughly, may now serve as an example, its bore is 0.3 inches, the “bullet” weighs 10 grams, the driving charge 3.2 grams.  The barrel is 29.1 inches, or about 90 calibers long.

The bullet leaves the muzzle with a velocity of 2936 feet per second, involving a small loss of energy since the muzzle velocity could be 66 feet higher if the barrel were 45-4 inches or 150 calibers long.  These figures show how much the friction in the barrel retards the bullet.  To attain a speed of 2936 feet per second a barrel length of 90 calibers is required.  But an additional length of 60 calibers would increase the muzzle velocity by only 66 feet.  No wonder the designers preferred to save these 66 feet, and save weight and material.  If the barrel was much longer, the bullet would not leave it.  That’s what would happen in the case of rifle 98 if the length of the barrel surpassed 23 feet.

In special cases longer barrels were built: The 80-mile gun that fired at Paris from the forest of Crepy in March, 1918 (2) had a barrel that was 118 feet or 170 calibers long.  However, only three quarters of that barrel were rifled, the last 45 calibers of length were smooth.  Another retarding factor, not often mentioned and apparently not yet fully determined is the air above the shell in the barrel.  Since the projectile acquires supersonic speeds, that air cannot escape but has to be compressed, which might mean a considerable loss in the case of a long gun of large caliber.

Point one in favor of guns in space war: they do not have to spend that energy.

When the projectile leaves the muzzle the trouble really starts.  Older books say that the trajectory is a parabola – it is elliptical with the center of the Earth as one of the focal points of the ellipse.  The trajectory is influenced by the rotation of the Earth, by the attraction of large mountains, by barometric pressure and by the humidity of the air and by a number of other factors that might be avoided by careful design.  Incidentally, streamlining would be useless; we deal with supersonic velocities.  While the shell rises the velocity decreases until the peak of the flight is reached.  Then the velocity increases again, due to gravitational attraction, and decreases with mounting speed due to increasing air resistance.*

____________________

*Most of these factors become noticeable only in long trajectories.  The changes in velocity are beautifully shown in the following table, calculated by Max Valler for the trajectory of the Paris Gun – authentic data are still secret.

angle distance (km) altitude (km) velocity (km/sec) time (sec)
54 0 0 1.5 0
53 3.45 4.67 1.3 4.2
50 10.83 14.00 1.06 14.3
45 19.70 23.72 .93 27.3
40 26.80 30.33 .86 38.2
25 43.07 41.04 .72 62.1
0 63.34 46.20 .65 94.5
25 83.55 41.60 .71 120.0
40 99.06 31.20 .84 150.5
50 115.99 16.60 .95 173.3
53 122.00 6.12 .94 191.0
58 126.00 0 0.86 199.0

____________________

The main factors are therefore, gravity and resistance – two more points in favor of the use of guns in space.  There is no air resistance and the gravitational fields are weak where spaceships usually travel.

That bullet from infantry rifle 98 has near its muzzle 3000 foot pounds of kinetic energy.  When it hits a target 3280 feet (1 kilometer) from the muzzle its kinetic energy is only 336 foot pounds, and at 2 kilometers a mere 88 foot pounds.  The extreme range of that rifle is about 4 kilometers (2.5 miles), but if there were no air it would carry more than 70 kilometers (43.5 miles).  Rifles do not attain more than 5% of their vacuum range under normal surface conditions, field artillery pieces attain about 20%, heavy artillery shells about 25%, long naval rifles of large caliber 30%, and long-range guns up to 50%, because the longer part of their trajectory is situated in the near- vacuum of the stratosphere.

In space in a weak gravitational field, the infantry rifle bullet would arrive at a target 20 miles distant – you could hardly aim without a telescope at something farther away – with about 3020 foot pounds of kinetic energy.  No, “3020” is not a printing error, because the muzzle velocity would be higher, due to the lack of air resistance in the barrel!

AFTER being pleased so much with the performance of a portable rifle we’ll have a look at “real” guns.  There exists an especially nice field piece, La Soixante-quinze, the famous French 75 millimeter gun.  It has a 20-caliber barrel, about 7 feet 4 inches long.  Its shell weighs 14.3 pounds, the muzzle velocity in air is 1970 feet per second, the kinetic energy at the muzzle about 2,800,000 foot pounds. [!?]

The barrel of the .75 weighs about 680 pounds, each cartridge about 22 pounds, so that gun, additional equipment and 150 rounds of ammunition amount to about two tons – not excessive a weight for a ship that does not have to carry passengers or cargo – say a Patrol cruiser – but very impressive an armament for a spaceship.  Of course, the gun would not be a three-inch field piece.  In a French paper on Avions de gros bombardement it was very recently pointed out that guns are much heavier than necessary.

____________________

 

Figure 4.  English war-rocket.  This rocket shell is listed in the official British tables of war equipment – a modern, practical rocket shell.

____________________

Designers simply did not pay much attention to weight as long as the gun did not become too heavy for land transport, or if – in case it was too heavy – could be divided into easy loads.  Besides, military experts have their ideas about service life.  One of my closest friends once designed a new type of compass for a firm working for one of the large European navies.  After exhaustive tests that compass was rejected because it was too light!  It was later redesigned with parts and casings that were not stronger than the original parts, but multiplied the weight.  The weight of gun barrels, to get back to the topic, could be reduced to about half without visibly shortening of service life and it could be reduced to a quarter if a shorter service life would be accepted.  That brings even a six-inch long-range gun within reach for large cruisers that do patrol duty; for example, in circling planets.  “Six-inch long range,” incidentally, means just that in space, it could shoot at enemies farther away than a portable telescope could show.

So there is certain no need for a special weapon.  How about special shells?  On Earth three main types are in use: One that dumps as much high explosive as a thin-walled shell will hold on the enemy; one that has to pierce armor and has, therefore, thicker walls and a very strong tip, and one that contains little explosive and many lead balls to scatter around against living targets.

Your first guess is probably that the armor-piercing type is the given projectile for space war.  Which raises the question how much armor is to be pierced.  Terrestrial field guns are equipped with a shield supposed to protect the gun crew against rifle and machine-gun fire and smaller splinters.  Before the World War a shell of 3 millimeters was considered sufficient, but direct rifle fire from distances of a thousand feet or less penetrated them.

____________________

 

Figure 5.  Cross-section of proposed space rocket shell.  To get striking power in a rocket equivalent to a 75 shell, the driving charge of the rocket would be inordinately heavy.  

____________________

Light battle cruisers on the seas carry a six-inch armor around; it would afford protection against hits from fairly distant 75 mm. guns.  However, a six-inch armor is considered light; most warships carry ten-inch armor plate, and the heaviest battle wagons show up to 30 inches of armor.  Now a battleship has only an armor belt, protecting the sides where hits are most likely, and protecting those spots where hits would be most destructive.  A large section of the ship is protected by the water in which it floats.  Spaceships are not so lucky as to have vulnerable points: they are vulnerable all around.  Therefore, they need armor plate all over the hull.

The weight of such an armor is a nice example for mathematical enjoyment at breakfast or during a subway ride.  We’ll say that a fair-sized spaceship is 90 yards [82.3 meters; 270 feet] long and 20 yards [18.3 meters; 60 feet] in diameter.  To make matters easier we shall assume that the shape is cylindrical, to make up for the difference in surface between cylinder and cigar shape we’ll forget about top and bottom of the cylinder and restrict ourselves to the curved surface.  That surface is equal to the length of the cylinder, multiplied by the diameter, times pi which makes 5070 square yards.  One square yard of six-inch armor plate weighs not quite a ton.  Multiplied by the number oi square yards we arrive at, roughly, twelve million pounds!

You can cut down for the thickness of the armor as much as you want.  It will always be too heavy, until you arrive at plates of a thickness the outer hull would haw to have anyhow.

In short, a Spaceship cannot be protected by plate armor.  Its only defense is its offensive power, since it can always carry guns hundreds of times as powerful as the heaviest possible armor.  So we don’t need armor piercing projectiles, any projectile will penetrate the hull – even rifle bullets.

The important difference is that a spaceship cannot be sunk either – a fact not stressed enough by science-fiction authors.  When a battleship gets a few really serious holes, it is soon out of action and it is relatively unimportant whether the crew abandons ship or sinks with it firing as long as they are above water.  A few bad hits that struck a spaceship may disable it as a means of transportation, but it still does not disappear.  If every man wears a spacesuit the loss of air can be temporarily disregarded.  The various gun posts can and will continue firing until every man on board is disabled. (3)

Space war, therefore, calls for shells that either blast the enemy to smell pieces at once or for shells that quickly disable every man on board.  Which means that either high-explosive shells with thin walls and much H-E are used, or else those shells that contain large numbers of individual bullets should be steel balls and not lead balls, as in terrestrial warfare  If the range is short – as “short” ranges in space go – machine guns are not bad at all, or else that nice contraption that goes under the name of “Chicago Piano,” consisting of eight one-pounder rapid-fire guns mounted on one beam, each firing 200 rounds per minute.  [QF 2-pounder Mk VIII naval gun, a.k.a. “multiple pom-pom”.]  If a spaceship were subjected to the concert of a Chicago Piano for only one minute it would certainly look even worse than after a treatment with heat and disintegrator rays, especially since those rays are usually blocked in stories by adequate screens.

____________________

“An eight gun 2-pounder QF Mk VIII anti-aircraft ‘Pom Pom’ gun installation.”  (From History of War.)

____________________

 “If a spaceship were subjected to the concert of a Chicago Piano for only one minute it would certainly look even worse than after a treatment with heat and disintegrator rays…”

“The pods, assholes!”

(No other dialogue needed.)

____________________

THOSE screens deserve a short discussion, too.  As far as ray screens against hostile rays are concerned, we do not need to worry for long.  Without effective rays there is no need for ray screens.  But it is another story with those fictive screens that are supposed to offer protection against flying pieces of matter charged with kinetic energy.  Could those force fields, or meteorite detectors, or whatever you like to call them be made to actually protect a spaceship?  Strong electric or magnetic fields can deflect material bodies, but the influence is much too weak to avail against bullets with supersonic speeds.  To create a field of such power and range would require equipment of such a ponderous mass and weight – even assuming atomic power – that nickel-steel armor might be lighter.  Only gravity screens would really afford protection.

A gravity screen is supposed to set up a difference in gravity potential and to create what might be called a gravity shadow.  A projectile that were to enter a gravity shadow would need as much kinetic energy as is normally required to overcome the difference of gravity potential in question.  Since it is also usually assumed that the power of gravity screens can be made to vary, the commander of the ship could “adjust” his screens according to enemy fire.

The trouble with gravity screens is not that we do not know how to make them, but that they cannot be made at all.  Devices that “shield off” gravity belong to the category of “permanent impossibilities,” things that cannot be done just as you cannot construct a seven-cornered polygon or trisect a given angle.  The problem of the gravity screen has to be regarded as having been solved just as the problem of the perpetuum mobile has been solved: negatively, it cannot be done.

All this applies, however, only to “gravity screens” of the cavorite type and similar marvelous compounds.  It does not hold true for what may be termed a “counter field.”  Unfortunately we do not know what gravity really is – but it is certainly a force of some kind.  If, one day, somebody discovers the truth about gravity he might also find a way to create gravity fields artificially.  Now we can conceive of a magnetic field that could eliminate the influence of Earth’s field if the latter were magnetic instead of gravitational.  (I am not speaking about Earth’s real magnetic field.)

Similarly we can conceive of a counter field eliminating the effects of the natural gravity fields.  To build up a field of the required strength needs lots of power, to be sure, but one might assume that the initial supply could be furnished by a stationary power plant.  Such a counter field would, of course, have most of the features of cavorite – among them the protection against projectiles of less kinetic energy than the difference of gravity potentials in question.

With this vague hope for possible protection of spaceships we may safely return to the original topic: means of destruction.  Guns and machine guns were found to do nicely – and rocket shells?

Rockets began as weapons of war, they were revived for this purpose by Sir William Congreve in 1804 when there was no other competition for them than smooth-barreled guns of tremendous weight that carried a mile without any accuracy worth mentioning.  In fact, Congreve’s rockets and Hale’s later stickless rockets were more accurate than the contemporary guns; hard to believe, but stated in many of the old reports on rocket tests.

And, contrary to popular belief, war rockets were retained in the Service by Great Britain even in the beginning of the twentieth century.  The “Treatise on Ammunition,” issued in 1905 [see 1915 edition at Archive.org; see illustrations in 1897 edition at Compass Library] by the (British) War Office, still stated: “Rockets are employed in the service for signaling, for display, as weapons of war, and in conjunction with the life-saving apparatus.”  The war rocket officially termed, “Rocket, War, 24-pr., Mark VII, (C). painted red,” was described as being made of steel tubing and cast iron.  The average range given was 1800 yards, they had no guiding stick but a device to make them rotate in flight.  If these rockets were still used in 1905 or later, they were probably used in colonial service.  Despite very many attempts made just at that time to revive war rockets, no army introduced them.  Rocket shells behaved, in all the tests that were made, even more erratically in the air than ordinary shells.

It would be different in space.  No air resistance would disturb the flight of a rocket-driven shell.  And instead of a heavy steel barrel only a thin-walled launched tube would be needed that could even be made of aluminum or magnesium alloys.

The first military objection against rocket shells would be that they could be more easily seen.  This, however, could be overcome in using a very high acceleration with short burning period.  The driving charge, incidentally, should be powder, not liquids.  Powder it not as powerful and not as adaptable as liquid fuel, to be sure, but easier to handle and less expensive because it eliminates the need for mechanisms like combustion chambers, injection nozzles, pressure devices and a host of valves.  Powder has the further advantage of having a natural tendency for shorter combustion periods and higher accelerations.

But guns are still superior, this time because of lesser weight!

If the shell part of the rocket shell shall be the same as that of a 75 mm. gun. and if the final velocity of the rocket shell, after complete combustion of the driving charge, shall be equal to that of a gun projectile the comparison of weights looks as follows:

GUN

weight of the gun – 880 pounds
weight of 100 cartridges – 2200 pounds

total weight – 3080 pounds

ROCKETS

launching tube, etc. – 45 pounds
100 shell heads – 1430 pounds
100 rockets with sufficient driving charge – 4300 pounds

total weight – 5775 pounds

Thin, of course, does not mean that rocket shells will not be built.  For patrol cruisers guns are better, but other ships will not carry 100 rounds of ammunition all the time, as soon as less than twenty rounds are carried, the rockets are lighter.  (There are a few story plots hidden in this statement.)  One might conceive of heavy space torpedoes built along the lines of rocket shells, 10 feet long and weighing 1 1/2 tons.  But I simply won’t like so much powder in one piece on board – and the construction of such a torpedo with present-day methods of manufacture is, by the way, impossible.

SPACE WAR certainly has its peculiar features, quite different from those pictured in stories, but peculiar just the same.  The story picture of shining ships that battle with searing rays and flaming screens is so highly improbable that it can simply be termed wrong.  There won’t be any rays and there won’t be screens, especially not the latter because you would be unable to shoot while you had them working.

Instead there would be ships painted night-black, the camouflage of space, carrying guns of incredible range and immensely destructive power.  The ships would be extremely vulnerable, but at the same time they could not sink and would be capable of inflicting fatal damage as long as a soul on board is alive.

They would not steam into battle with flying colors, but try to approach unseen with all lights extinguished, avoiding the light background of the Milky Way.  If the battle is finally opened ammunition would be used very sparingly, not only because the supply is limited, but because missing is almost as bad as being hit.  The 2000-3000 feet per second of muzzle velocity do not count very much as compared with the orbital speed of the planets and all the shells that missed show up again at the point of battle after one or two or three years when they have completed their full orbit around the Sun.

That their own fire throws them off course is another reason for few shots.  Each 75 mm. shell, weighing 14.3 pounds and leaving in space the muzzle with a velocity of say 2300 feet per second, produces a recoil of 1000 pounds.  And the powder charge, weighing, say, 6.5 pounds, and leaving the muzzle with approximately 6600 feet per second produces another 1300 pounds of recoil.  A single shot would naturally not influence the course of a 3000-ton patrol cruiser very much, but during a prolonged battle there will be deflections to be corrected by the rocket motors.

On second thought I take that back.  The guns do not have to have a recoil that influences the ship.  Several years ago Schneider in Creuzot (France) announced a recoil eliminator, based on the difference in speed between shell and driving gases.  Since the gases are between two and three times as fast as the shell, they overtake it as soon as it clears the muzzle.  The Schneider-Creuzot device was intended to catch these gases and to deflect them by 180 degrees so that their recoil counteracts that of the shell.  The example of the 75 mm. gun has shown that the gases, weighing only 6.5 pounds, produce theoretically 1300 pounds recoil, because they are about three times as fast as the 14.3-pound shell that produces only 1000 pounds of recoil.  If all the gases could be caught and deflected a full 180 degrees, the gun barrel would actually jerk forward with each shot.  Naturally some of the gas simply follows the shell – but tests have shown that the remaining recoil is very low.

There is one remark I wanted to make all through this article, but up to now 1 did not have an opportunity to do so.  What I wanted to say was that there was no talk of armament in Professor Oberth’s patent application.

(1) This decision was entirely in accordance with German patent laws.  In other countries a patent might have been granted under the same circumstances. 

(2) Usually miscalled “Rig Bertha”: the official name was “Kaiser Wilhelm Gun,” the common name “Paris Gun.”  “Big Bertha” was the tame of the mobile 17-inch mortar of Krupps.  Both guns were designed by Professor Rausenberger [Fritz Rausenberger]. 

(3) I recall only one story where this point was stressed.  Campbell’s “Mightiest Machine.”  The fact is also hinted at in Dr. E.E. Smith’s “Skylark III” during the first encounter with the Fenachrome, but it is not especially emphasized.

— References, Related Readings, and What-Not —

Willy O.O. Ley, at Wikipedia

Virgil W. Finlay, at Wikipedia

Space War, at Atomic Rockets

Warfare in Science Fiction, at Technovology

Weapons in Science Fiction, at Technovology

— Here’s a book —

Wysocki, Edward M., Jr., An ASTOUNDING War: Science Fiction and World War II, CreateSpace Independent Publishing Platform, April 16, 2015

— Lots of Cool Videos —

Because Science – Kyle Hill

Why Every Movie Space Battle Is Wrong ((at Nerdist) 5/11/17)

The Truth About Space War (4/12/18)

Curious Droid – Paul Shillito

Electromagnetic Railguns – The U.S Military’s Future Superguns – 200 mile range Mach 7 projectiles (11/4/17)

Will Directed Energy Weapons be the Future? (6/12/20)

Generation Films – Allen Xie

Best Space Navies in Science Fiction (2/10/20)

5 Most Brilliant Battlefield Strategies in Science Fiction (5/8/20)

5 Things Movies Get Wrong About Space Combat (5/12/20)

6 More Things Movies Get Wrong About Space Battles (5/28/20)

Why “The Expanse” Has the Most Realistic Space Combat (6/21/20)

It’s Okay To Be Smart – Joe Hanson

The Physics of Space Battles (9/22/14)

PBS SpaceTime – Matt O’Dowd

The Real Star Wars (7/19/17)

5 Ways to Stop a Killer Asteroid (11/18/15)

 Science & Futurism with Isaac Arthur (SFIA) – Isaac Arthur

Space Warfare (11/24/16)

Force Fields (7/27/17)

Interplanetary Warfare (8/31/17)

Interstellar Warfare (3/8/18)

Planetary Assaults & Invasions (5/17/18)

Attack of the Drones (9/13/18)

Battle for The Moon (11/15/18)

The Infographics Show

What If There Was War in Space? (12/23/18)

Railguns and more! – The Battle of Thoth Station, in “The Expanse”

Rocinante Attack on Thoth Station (Episode “Doors & Corners”) “The Expanse”, Season 2, Episode 2 (Air Date 2/1/17), at DailyMotion

List of “The Expanse” Episodes, at Wikipedia

Art: “The Luck of Ignatz” – Virgil Finlay’s Preliminary cover for Astounding Science Fiction, August, 1939

Pinterest

Artnet

 


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home3/emc2ftl3/public_html/wp-includes/formatting.php on line 4365